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Shuman (1970) illustrated certain truncation errors associated with
common difference estimates of derivatives in spherical coordinates, such
as for divergence, D:

X +r ucD = +
r cos %o r

74 sin co

r cos 0

where 40 is latitude at the center of a grid box. I showed these errors
to be large in polar regions in grids in which the distance between points
on a latitude circle are kept constant. In a regular latitude-longitude
grid I showed these to be reduced by up to two orders of magnitude. For
large-scale systems an error remained, however, barely less than the order
of magnitude of vertically mass-averaged divergence in the atmosphere
(4 10-l sec-1).

Shuman (1976) later showed that the form given above does not conserve
mass, and I showed how to correct it. These were studies of two different..--
kiuds of error, the first due to imperfect estimates of derivatives of
vectors, and the second due to imperfect conservation of mass. 

Hovermale (1976) also dealt with the secondd kin4 of error. He
emphasized ways to design difference systems at the pole itself.

In this paper, I will show how to eliminate both kinds of errors.
The resulting correction factors are tiny in regular latitude-longitude
grids, and can be significant only if they feed back upon themselves.

First, consider the problem in polar coordinates on a plane. Figure 1
shows the coordinate system and a grid box. In the hydrodynamic equations
I first note that wherever a derivative of a velocity component with
respect to a appears, a second term is always associated with it, thus:

au
G - v

V+ u

The second terms in each expression arise from differentiation of a vector:

Dv = u_ v i. + O +ujDa tau- 3 (Da u~j
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For convenience, and with some artistic license, I say

9 _ .U _V2 1 -au dA
p;a p a P A J DX

Dv = v'i 1 f aV dA

ap : --p A J ay

I now choose U and V to be functions of space, such that they are each
linear along all straight lines a = constant and all straight lines
y = constant. At constant y,

U= + Ux x

But x = -y tan a

U'=

U Ua

xs= -2y tan ha = y S
a A A-

where s- sin ½Aa
½Aa

C = cos ½Aa

Therefore, at constant y,

U = : + C U tan a
S a

Now

- a:P + U (a. _ p)

But
p = _ Y

cos a

-a
p = -_

C

Y9
p oT - _

Therefore,

-aP -P-up l (-ya
U = U .&Up (-q

Similarly,

Ua= -1 Ul (y-y 9)Us--d ap -~=
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Substitution from (2) into (1) yields

U = U + C UaP tan a - 1 ~ t y) U (y-yY-Y) 1 (YYg) tan as c~~~ S ap

Similarly for V,

V = VP + C vP tan a -- -V) tan a
S a ~ P yy 9) . P' y.

(3a)

(3b)

Equations (3) show that my assumption about linear variation of V along the
two sets of straight lines is neither an over-statement nor an under-
statement. Such a variation will yield the given sets of values at the
four bounding grid points of the box.

Now

1 y x6 dx dy
dA =A , 2

. X2

= Aa 8 U dy

AJ Udy
A Y4

= Aa Y8r 1
A f a C

Y4

Aa Ap -a -p

A p a
y =. -p cos a

-a
y = -C
p

Ucap (y-yq)]dy

Therefore

1 f aU dA = + C 4a AP 
A r ax A oa

The area of the grid box is

JY8 2X6 Y8

A = dx dy = Aa xa dy =

Y4 x2 Y4

= + S ap Ap = )2] +

C .. 2

Y8

- S Ac y dy

Y4

S -ay s A p ~pa ~=
C P
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But
y = -p cos a

-ap = _pO YeP= -Po C

and therefore

A = SC po Aa Ap

Therefore,

i ax S p

Now,

xtan a = - -
Y

a tan a
ay =

x

Y 2

Therefore, differentiation of (3b) yields

av = c x- 1 v + 1 v Y. X
ay S 37 C P S ap 9 y2

= p -Vp (C Ua+ Vap Y9) 2

and then, because the x-integration is zero by symmetry,

J1 a
In s umay,

In summa.;y,

VdA = -
y C P

1 Jf U dA =
A j ax

A j
av dA =
a3Y

-p
Uc4

p
C

x = p sin a

y = -p cos a

Therefore,
U = u cos a - v sin a

V = u sin a + v cos a

Now,

(4a)

(4b)
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and
-P -p C -ap SUa -- Ua

~u = + cap 2 ( uap S +tC
and therefore,

au v _' 1 f U
pDu p A J ax

dA =C a
S Po

-cap_ v

Po
(6a)

(6b)av a 1 DV dA =-a - -C2U
ap A f ay P SC ap

In the latter, I have used the identity,

A-a 2 1- _C2

( I =-S-

There is a conceptually straightforward analogous derivation on
the surface of a sphere, but it involves messy integrals. I will outline
here its principles, but will adopt a simpler approach. In brief, if X,
y, and Z are cartesian coordinates as shown in figure 2, and X is longitude,
latitude, and r radial distance from the center of the earth, then X and

-4 are analogous to a and p on the plane. The analogues to x and y on the
plane are gotten by rotating the coordinate system 90° about the X-axis to
obtain new sets of coordinates, X, Y', i' and X', 4', r, as shown. If
the X, Z-plane cuts through the middle of a grid "box," the coordinate 4'
is analogous to x on the plane, and -X' is analogous to y. The relations
among the various coordinates are given by

X= XI
Y = a'
M = -Y'

and

= r cos
= r cos

= r sin

r cos 4 X

r t
r b6'

-r cos 4"'?
a(r $')

r a'
3(r cos 't'.)
r cos 4' ax9t' -

4 cos ' =
4 sin X =

4) . =

r cos 4'
r sin 4'

-r cos 4'

cos l

sin X'

is analogous to u on the
tv~ ~ ~ ~ ~~~! .,! II1v

Tt ! If tv It !!

1f if ! t 11 II. II " II.. II "t U J " V

I of 1 ' ~' It DV of iax

(r o')sin 
r cos ~' Dy
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A grid "box" on the spherical surface is bounded by the curves, A = constant
t+.:iand A' = constant, all being great circles and analogous to the straight

lines, a constant and y constant on the plane,

O^ ~ { A difference system is a set of approximations, and simplifications are( Atherefore justified. I will simplify the problem through conformal mapping.
Horizontal divergence expressed in cartesian coordinates on a conformal projection
is

D = m2 (8)'

where m is the map scale factor, i.e., the ratio of a mapped small distance
to the distance true on the earth; and U and V are the x,y- components
of velocity true on the earth. I will choose the mapping function so
that at the center of the grix box, x increases eastward and y northward.
Equation (8) then suggests to me the approximations

Au v sin ~ ~ 1 /m2 a MdA (9a)
r cos D aX r cos - A dA (9a

Dv % - m2 "r 1mdA (9b)
r24) A J ay m

:-!ii - together with appropriate assumptions of linear variation of U/m and V/m
with distance on the map. In (9) A is the area of the grid box true on
the earth:

A = JY8 xm-
2 dx dy

Y 4 x2

v' ~ I choose a Mercator projection true at 4' = = O, that is, the
"equator" of the projection will be the central geographical meridian of
the grid box. My choice has the advantage that a north-south column of
grid boxes, geographical pole-to-pole, are all mapped on the same projection.

~:-ve ~ The mapping functions, then, are

x = r In I1 + sin ' (lOa)
cos i'

y = -rA' (lOb)

m 1 (10c)
cos 4)'

where V',4' are related to A,% by (7), and are shown in Figure 2.

Now, generally, the great circles bounding the box, i.e.,
A2 ,6 = constant and A' = constant, cannot all be straight lines on a
conformal map. In the'8Mercator projection that I am adopting, the
northern and southern boundaries are straight lines on the map, namely,
Y48 = rA' = constant. The eastern and western boundaries, however,4,8 4,8
are convex curves. This means I cannot use directly my results (4),
that I derived for polar coordinates on the plane, to evaluate the

integrals in (9).
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*X Q( Instead of attempting to carry out the quadratures in (9), I will
approximate them, guided by the forms (4). Thus, I take

-4_ [2 a(U dA k 1 ru) (11a)
A J X Fx ( r cos ro J

_l~~~~~~~~~~~lb. L2 a 22LdA [k.J (llb)
A ay r

where k and k2 are functions of A alone, the interval of latitude andlongitude between grid points, and will be chosen below by conservation
arguments.

Now, the eastward and northward components of velocity are

u = r cos ~ A (12a)';ii:i V = r $ (12b)

The x and y components of velocity true on the earth are

U = r (13a)-' m

K ; V m -r cos V (13b)

which can easily be obtained by differentiating (10a) and (lO0b). Just ason the plane, there must be a relationship like (5) between U,V and u,vas defined by (13) and (12). The existence of such a relationship is
necessitated by conformality, which is a sufficient condition for preservation
of angles. I write (5) again, this time with U,V and u,v defined by (13)
and (12):

.iil.-! U = u cos a - v sin a (14a)

V = u sin a + v cos a (14h)

I solve these for u,v in terms of U,V:

u = U cos a + V sin a (15a)

v = -U sin a + V cos a (15b)

Differentiating (7b):

u cos X - v sin q sin A = U cos f'

and comparing this with (14a), I find

~~( cos a = m cos A (16a)

.... V sin a = sinin sin A (16b)
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I can get another set of expressions for a by differentiating (?c):

v cos = U sin ' sin ' + V cos At

Comparing this with (15b) I find

coS a = Cos At
cos $

sin a = = sin 7' sin A'~~~~~sin A = 
COS 

These two sets, of course, are equivalent, as may easily be shown by
manipulations using (7). Using (14) and (16) I now write

- = u cos A - v sin q sin A (17a)

V = u sin ~ sin A + v cos A (17b)m

For convenience and economy in writing, I define

s = sin ½A

c= cos ½A

and note that
J

A2 =C 2

t 4 _ _s
X

(cos A)A = (sin A) = 0

t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(cos X) = c

(sin A) = s

-Z -Z
(ab) = a b + a b

z Z 

(ab) = +-b + 2- a b-.-z -z -z l~c. 2

s2 z z

where a,b are any variables, and z is one coordinate of any pair of coordinates.
The other coordinate of the pair is understood to be held constant in differ-
encing and averaging.

I now perform the difference operations in (11) on (17):

Ifm2 L rudA -ks s(v sin ) (18a)
A DX m r cos x

0

1 fm2 aL dA k2. [(2 (u sin )t+ cv
Af~m= aymLr s (%snx~ c (18b)
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When (18a) is added_to (18b) an estimate, D, for divergence is obtained.
When that estimate D is weighted by the area of its grid box, and summed

V ~' over an -ensemble of adjacent boxes, the result should be a "line" sum
around the boundary of the ensemble. In other words, the result should
depend only on values of u and v on the boundary of the ensemble, and not
at all on values interior to the ensemble. At least such a feature is
desirable and can easily be designed into the estimates (18) by an appropri-
ate choice of k 1 and k2 , aslI shall show.

The area of a grid box bounded by two meridians and two latitude circles
each separated by A is 

sr2 A2 cos 4o

This is not precisely the area of my grid box, which is bounded on the north
and south by great circles rather than latitude circles. It is a close
approximation, however, in the spirit of difference approximations. In any
case, the precise area of the grid box will not enter into the system that
I am deriving. I will only use the dependence of the area on the central

':.:.:: latitude.

Thus, after multiplying (18a) and (18b) by (cos 4,), I note that the
first term of the right-hand member of (18a), when summed box-by-box
west-to-east, will sum to the difference of 0 at the extrema of the
east-west row. Similarly, because 4 is constant east-west, the first term
of (18b) will sum to values only at the extrema of an east-west row. That
leaves the second terms of {18a) and (18b) to be considered. I will choose
ki and k2 so that the second terms sum to values only at the extrema of
_a'north-south column of boxes. Now, consider them added together and
multiplied by (r cos ~o) :

-kls (v sin 4) + k2 cv4 cos 4o

-kis (cv sin +- v Cos 0) + k2 cv Cos

= -k1 scv sin 4o + [-k (1-c2) + k c] v cos o (19a)1 + k~ C] V Cos(9a
I have used here the following:

(sin ) = c sin 0o

(sin 4) = s cos ~o

Operations on (cos 4) yield similar results:

(cos 4,) = c cos ~o

(cos ) = -s sin 4

* ( 9



*~( ~ According to Shuman (1976), the areal average, D, of divergence over a
W (xgrid "box" bounded by pairs of meridians and latitude Circles is

sr cos [u + (vX cos )) ]sr cos4 ~O

Consider the term involving v after multiplying by (r cos 0):

( 0 cos -) sin o + c c (19b)
This term plainly sums to values at the extrema of a north-south column.
Further, it is evident that (19a) and (19b) are estimates of the same quantity
if k1 and k2 are nearly unity. I will make (19a) and (19b) the same by
writing

k l sc = 1

-kl(l-c2) + k2c = C
S

Thus,
k = (sc)-l

k2 = (sc2)-l

and (9) and (18) become

(~9~~~~~ ~a~u v sin 4 1 fm2 a (u dA
r cos D 3X r cos Am ax PA?.-,?ir _ V11.,-- !1 (20a)r cos Suo

- -:.dA = + sin (2 0b)A m2 mY rsc sc A 4 (20b)

The estimates for the 4-derivative of u and the X-derivative of v may
be obtained directly from (20a) and (20b) by substituting components of the
vector Vxk, where k is a unit vertical vector. Thus, wherever u appears
above I substitute v, and wherever v appears I substitute -u. Then,

cDv + u sin 1 2a (v)+ -Im-I-IpdA
r cos aX r cos A m

1 + 1r cos n) (20c). c (.!sin ~

D~u ~ifm2 DLfUdA 1 1-c2 1
r A j ay rsc fA -SC_(V sin (20d)
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Ow ( Use of the Corrected Difference Forms.

The finite difference systems (20) developed here eliminate entirely
the errors discussed by Shuman (1970). One conclusion that may be drawn,
therefore, is'that my criticism of grids like Kurihara's (1965), in which
distances between grid points are preserved, do not apply if finite differ-
ence systems are derived along the lines presented here.

In regular latitude-longitude grids commonly in use, the corrections
arising from curvilinearity are typically small, less than 10- 7 sec- . Such
small magnitudes suggest that they are not important, except perhaps in
their effect on vertically mass-averaged divergence, for its order of mag-
nitude is typically 10- 7 sec- 1. At any rate, the continuity equation is the
first place I would look for significant effects.
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x = p sin a
Y = -p cosa

u = pa
V = -P

i = pVa
j = - Vp

U = x
V=y

A = JY q:1 Y dy

Y4 X 2
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